Крупные экосистемы. Экосистема: структура экосистемы, определение, понятие, виды и интересные факты. Экосистемы и человек

Виды экосистем.

Экологическая система (экосистема) – пространственно определенная совокупность живых организмов и среды их обитания, объединенных вещественно-энергетическими и информационными взаимодействиями.

Различают водные и наземные природные экосистемы.

Водные экосистемы – это реки, озера, пруды, болота – пресноводные экосистемы, а также моря и океаны – водоемы с соленой водой.

Наземные экосистемы – это тундровая, таежная, лесная, лесостепная, степная, полупустынная, пустынная, горная экосистемы.

В каждой наземной экосистеме есть абиотический компонент – биотоп, или экотоп – участок с одинаковыми ландшафтными, климатическими, почвенными условиями; и биотический компонент – сообщество, или биоценоз – совокупность всех живых организмов, населяющих данный биотоп. Биотоп является общим местообитанием для всех членов сообщества. Биоценозы состоят из представителей многих видов растений, животных и микроорганизмов. Практически каждый вид в биоценозе представлен многими особями разного пола и возраста. Они образуют популяцию данного вида в экосистеме. Биоценоз очень трудно рассматривать отдельно от биотопа, поэтому вводят такое понятие, как биогеоценоз (биотоп+биоценоз). Биогеоценоз - элементарная наземная экосистема, главная форма существования природных экосистем.

В каждую экосистему входят группы организмов разных видов, различимые по способу питания:

Автотрофы (“самопитающиеся”);

Гетеротрофы (“питающиеся другими”);

Консументы – потребители органического вещества живых организмов;

Дитритофаги, или сапрофаги, - организмы, питающиеся мертвым органическим веществом – остатками растений и животных;

Редуценты – бактерии и низшие грибы – завершают деструктивную работу консументов и сапрофагов, доводя разложение органики до ее полной минерализации и возвращая в среду экосистемы последние порции двуокиси углерода, воды и минеральных элементов.

Все названные группы организмов в любой экосистеме тесно взаимодействуют между собой, согласуя потоки вещества и энергии.

Таким образом, для естественной экосистемы характерны три признака:

1) экосистема обязательно представляет собой совокупность живых и неживых компонентов.

2) в рамках экосистемы осуществляется полный цикл, начиная с создания органического вещества и заканчивая его разложением на неорганические составляющие.

3) экосистема сохраняет устойчивость в течение некоторого времени, что обеспечивается определенной структурой биотических и абиотических компонентов.

Примерами природных экосистем являются: упавшее дерево, труп животного, маленький водоем, озеро, лес, пустыня, тундра, суша, океан, биосфера.

Как видно из примеров, более простые экосистемы входят в более сложно организованные. При этом реализуется иерархия организации систем, в данном случае экологических. Поэтому экосистемы делятся по пространственному масштабу на микроэкосистемы, мезоэкосистемы и макроэкосистемы.

Таким образом, устройство природы следует рассматривать как системное целое, состоящее из вложенных одна в другую экосистем, высшей из которых является уникальная глобальная экосистема - биосфера. В ее рамках происходит обмен энергией и веществом между всеми живыми и неживыми составляющими в масштабах планеты.

Антропогенное воздействие на природные экосистемы.

Антропогенные факторы, т.е. результаты деятельности человека, приводящие к изменению среды обитания можно рассматривать на уровне региона, страны или глобальном уровне.

Антропогенное загрязнение атмосферы приводит к глобальному изменению. Загрязнения атмосферы поступают в виде аэрозолей и газообразных веществ. Наибольшую опасность представляют газообразные вещества, на долю которых приходится около 80% всех выбросов. Прежде всего - это соединения серы, углерода, азота. Углекислый газ сам по себе не ядовит, но с его накоплением связана опасность такого глобального процесса как «парниковый эффект». Последствие мы видим по потеплению климата на Земле.

С попаданием в атмосферу соединений серы и азота связано выпадение кислотных дождей. Двуокись серы и окислы азота в воздухе соединяются с парами воды, затем вместе с дождями выпадают на землю фактически в виде разбавленных серной и азотной кислот. Такие осадки резко нарушают кислотность почвы, способствуют гибели растений и высыханию лесов, особенно хвойных. Попадая в реки и озера угнетающе действуют на флору и фауну, нередко приводя к полному уничтожению биологической жизни - от рыб до микроорганизмов. Расстояние между местом образования кислотных осадков и местом их выпадения может составлять тысячи километров.

Эти отрицательные воздействия глобального масштаба усугубляются процессами опустынивания и вырубки лесов. Главный фактор опустынивания - это деятельность самого человека. Среди антропогенных причин - это избыточный выпас скота, вырубка лесов, чрезмерная и неправильная эксплуатация земель. Ученые подсчитали, что общая площадь антропогенных пустынь превысила площадь естественных. Вот почему опустынивание относят к числу глобальных процессов.

Теперь рассмотрим примеры антропогенного воздействия на уровне нашей страны. Россия занимает одно из первых мест в мире по запасам пресной воды. И учитывая, что общие ресурсы пресной воды составляют от общего объема гидросферы Земли всего 2%, становится ясно, каким богатством мы обладаем. Главною опасность для этих ресурсов представляет загрязнение гидросферы. Основные запасы пресной воды сосредоточены в озерах, площадь которых в нашей стране больше территории Великобритании. В одном только Байкале находится примерно 20% мировых запасов пресной воды.

Ученые различают три вида загрязнения гидросферы : физическое, химическое и биологическое.

Под физическим понимается прежде всего тепловое загрязнение, образующееся в результате сброса подогретых вод, используемых для охлаждения на ТЭС и АЭС. Сброс таких вод приводит к нарушению природного водного режима. Например, реки в местах сброса таких вод не замерзают. В замкнутых водоемах это приводит к уменьшению содержания кислорода, что приводит к гибели рыб и бурному развитию одноклеточных водорослей («цветению» воды). К физическому загрязнению относят также радиоактивные загрязнения.

Химическое загрязнение гидросферы возникает в результате попадания в нее различных химических веществ и соединений. Примером служит сброс в водоемы тяжелых металлов (свинец, ртуть), удобрений (нитраты, фосфаты) и углеводородов (нефть, органические загрязнения). Главным источником выступает промышленность и транспорт.

Биологическое загрязнение создается микроорганизмами, часто болезнетворными. В водную среду они попадают со стоками химической, целлюлозно-бумажной, пищевой промышленности и животноводческих комплексов. Такие стоки могут явиться источниками различных заболеваний.

Особый вопрос в этой теме загрязнение Мирового океана. Оно происходит тремя путями.

Первый из них - речной сток, вместе с которым в океан попадают миллионы тонн различных металлов, соединений фосфора, органические загрязнения. При этом почти все взвешенные и большинство растворенных веществ осаждаются в устьях рек и прилегающих шельфах.

Второй путь загрязнения связан с атмосферными осадками, с ними в Мировой океан поступает большая часть свинца, половина ртути и пестицидов.

Наконец, третий путь непосредственно связан с хозяйственной деятельностью человека в акваториях Мирового океана. Наиболее распространенный вид загрязнения - нефтяное загрязнение при транспортировке и добыче нефти.

Результаты антропогенного воздействия.

В наше время последствия антропогенного воздействия на географическую среду многообразны и не все они контролируются человеком, многие из них проявляются позже. Перечислим основные из них.

Изменение климата (геофизики) Земли на основе усиления тепличного эффекта, выбросов метана и других газов, аэрозолей, радиоактивных газов, изменения концентрации озона.

Ослабление озонового экрана, образование большой «озоновой дыры» над Антарктидой и «малых дыр» в других регионах.

Загрязнение ближайшего космического пространства и его замусоривание.

Загрязнение атмосферы ядовитыми и вредными веществами с последующим выпадением кислотных дождей и разрушением озонового слоя, в котором участвуют фреоны, окислы азота, водяные пары и другие газовые примеси.

Загрязнение океана, захоронение в нем ядовитых и радиоактивных веществ, насыщение его вод углекислым газом из атмосферы, загрязнение нефтепродуктами, тяжелыми металлами, сложноорганическими соединениями, разрыв нормальной экологической связи между океаном и водами суши из-за строительства плотин и других гидросооружений.

Истощение и загрязнение поверхностных вод суши и подземных вод, нарушение баланса между поверхностными и подземными водами.

Радиоактивное загрязнение локальных участков и некоторых регионов, в связи с чернобыльской аварией, эксплуатацией атомных устройств и атомными испытаниями.

Продолжающееся накопление на поверхности суши ядовитых и радиоактивных веществ, бытового мусора и промышленных отходов (особенно неразлагающихся пластмасс), возникновение в них вторичных химических реакций с образованием токсичных веществ.

Опустынивание планеты, расширение уже существующих пустынь и углубление самого процесса опустынивания.

Сокращение площадей тропических и северных лесов, ведущее к уменьшению количества кислорода и исчезновению видов животных и растений.

Экологическая система или экосистема рассматривается наукой как масштабное взаимодействие живых организмов с неживой средой их обитания. Они влияют друг на друга, и их содействие позволяет поддерживать жизнь. Понятие «экосистема» является обобщенным, оно не имеет физического размера, так как включает в себя океан и , и одновременно маленькую лужу и цветок. Экосистемы очень разнообразны, они зависят от большого количества факторов, таких как климат, геологические условия и деятельность человека.

Общее понятие

Чтобы полностью понять термин «экосистема» рассмотрим его на примере леса. Лес – не просто большое количество деревьев или кустарников, а сложная совокупность связанных между собой элементов живой и неживой (земля, солнечный свет, воздух) природы. К живым организмам относят:

  • насекомых;
  • лишайники;
  • бактерии;
  • грибы.

Каждый организм выполняет свою четко поставленную роль, а общая работа всех живых и неживых элементов создает баланс для бесперебойной работы экосистемы. Каждый раз, когда посторонний фактор или новое живое существо проникают в экосистему, могут возникнуть негативные последствия, наносящие разрушения и потенциальный вред. Экосистема может разрушаться в результате жизнедеятельности человека или стихийных бедствий.

Виды экосистем

В зависимости масштаба проявления существует три основных вида экосистем:

  1. Макроэкосистема. Масштабная система, состоящая из маленьких систем. Примером становится пустыня, или океан населенный тысячами видов морских животных и растений.
  2. Мезоэкосистема. Экосистема небольшого размера (пруд, лесной массив или отдельная поляна).
  3. Микроэкосистема. Экосистема малого размера, которая имитирует в миниатюре природу различных экосистем (аквариум, труп животного, леской пень, лужа воды населенная микроорганизмами).

Уникальность экосистем в том, что они не имеют четко обозначенных границ. Чаще всего они дополняют друг друга или же разделяются пустынями, океанами и морями.

Человек играет весомую роль в жизнедеятельности экосистем. В наше время для удовлетворения собственных целей человечество создает новые и губит существующие экологические системы. В зависимости от способа образования экосистемы также делятся на две группы:

  1. Естественная экосистема. Создается в результате сил природы, способна самостоятельно восстанавливаться и создавать замкнутый круг веществ, от создания до распада.
  2. Искусственная или антропогенная экосистема. Состоит из растений и животных, которые обитают в условиях созданными руками человека (поле, пастбище, водохранилище, ботанический сад).

Одной из самых больших искусственных экосистем является город. Человек придумал его для удобства собственного существования и создал искусственные притоки энергии в виде газо- и водопроводов, электричества и отопления. Однако искусственная экосистема требует дополнительных притоков энергии и веществ извне.

Глобальная экосистема

Совокупность всех экологических систем составляет глобальную экосистему – . Она самая масштабная совокупность взаимодействия живой и неживой природы на планете Земля. Находится в балансе благодаря равновесию огромного множества экосистем и многообразия видов живых организмов. Она настолько огромна, что охватывает:

  • земную поверхность;
  • верхнюю часть литосферы;
  • нижнюю часть атмосферы;
  • все водные пространства.

Благодаря постоянному , глобальная экосистема сохраняет свою жизнедеятельность на протяжении миллиардов лет.

На нашей планете существуют различные экосистемы. Виды экосистем классифицируются определенным образом. Однако связать воедино все многообразие этих единиц биосферы невозможно. Именно поэтому существует несколько классификаций экологических систем. Например, разграничивают их по происхождению. Это:

Естественные (природные) экосистемы. К ним относятся те комплексы, в которых круговорот веществ осуществляется без какого-либо вмешательства человека.

Искусственные (антропогенные) экосистемы. Они созданы человеком и способны существовать только при его непосредственной поддержке.

Экологическая система (экосистема) – пространственно определенная совокупность живых организмов и среды их обитания, объединенных вещественно-энергетическими и информационными взаимодействиями.

Различают водные и наземные природные экосистемы.

Водные экосистемы – это реки, озера, пруды, болота – пресноводные экосистемы, а также моря и океаны – водоемы с соленой водой.

Наземные экосистемы – это тундровая, таежная, лесная, лесостепная, степная, полупустынная, пустынная, горная экосистемы.

В каждой наземной экосистеме есть абиотический компонент – биотоп, или экотоп – участок с одинаковыми ландшафтными, климатическими, почвенными условиями; и биотический компонент – сообщество, или биоценоз – совокупность всех живых организмов, населяющих данный биотоп. Биотоп является общим местообитанием для всех членов сообщества. Биоценозы состоят из представителей многих видов растений, животных и микроорганизмов. Практически каждый вид в биоценозе представлен многими особями разного пола и возраста. Они образуют популяцию данного вида в экосистеме. Биоценоз очень трудно рассматривать отдельно от биотопа, поэтому вводят такое понятие, как биогеоценоз (биотоп+биоценоз). Биогеоценоз - элементарная наземная экосистема, главная форма существования природных экосистем.

В каждую экосистему входят группы организмов разных видов, различимые по способу питания:

Автотрофы (“самопитающиеся”);

Гетеротрофы (“питающиеся другими”);

Консументы – потребители органического вещества живых организмов;

Дитритофаги, или сапрофаги, - организмы, питающиеся мертвым органическим веществом – остатками растений и животных;

Редуценты – бактерии и низшие грибы – завершают деструктивную работу консументов и сапрофагов, доводя разложение органики до ее полной минерализации и возвращая в среду экосистемы последние порции двуокиси углерода, воды и минеральных элементов.

Все названные группы организмов в любой экосистеме тесно взаимодействуют между собой, согласуя потоки вещества и энергии.

Таким образом, для естественной экосистемы характерны три признака:


1) экосистема обязательно представляет собой совокупность живых и неживых компонентов.

2) в рамках экосистемы осуществляется полный цикл, начиная с создания органического вещества и заканчивая его разложением на неорганические составляющие.

3) экосистема сохраняет устойчивость в течение некоторого времени, что обеспечивается определенной структурой биотических и абиотических компонентов.

Примерами природных экосистем являются: упавшее дерево, труп животного, маленький водоем, озеро, лес, пустыня, тундра, суша, океан, биосфера.

Как видно из примеров, более простые экосистемы входят в более сложно организованные. При этом реализуется иерархия организации систем, в данном случае экологических. Поэтому экосистемы делятся по пространственному масштабу на микроэкосистемы, мезоэкосистемы и макроэкосистемы.

Таким образом, устройство природы следует рассматривать как системное целое, состоящее из вложенных одна в другую экосистем, высшей из которых является уникальная глобальная экосистема - биосфера. В ее рамках происходит обмен энергией и веществом между всеми живыми и неживыми составляющими в масштабах планеты.

Классификация и свойства экосистем.

    Состав и структура экосистем.

    Энергетика и продукция экосистемы

    Экологические пирамиды

    Виды экосистем.

Состав и структура экосистем

Если обратится к лекции №1 данного курса можно обнаружить, что в область изучения экологии входят три основных уровня организации жизни: популяционный, экосистемный и биосферный. Для решения многих глобальных проблем и принятия решений ключевую роль играет изучение организменного уровня.

Как известно, живые организмы и их неживое (абиотическое) окружение неразделимо связаны друг с другом и находятся в постоянном взаимодействии, образуя экосистемы.

Экосистема – это совокупность всех живых организмов, проживающих на общей территории вместе с окружающей их неживой средой.

Экосистема - основная функциональная единица в экологии, поскольку в неё входят и организмы и неживая среда - компоненты, взаимно влияющие на свойства друг друга и необходимые для поддержания жизни в той её форме, которая существует на Земле.

Примером может служить луг, лес, озеро.

Достаточно часто понятие экосистемы отождествляют с понятием биогеоценоз, однако эти термины не являются синонимами. Понятие экосистемы более широкое, охватывает все виды совокупностей живых организмов и среды обитания, биогеоценозом можно назвать лишь природные образования (лес, луг и т.п.). Т.о. любой биогеоценоз является экосистемой, но не любая экосистема является биогеоценозом.

В состав экосистемы представлен двумя группами компонентов: абиотическими – компоненты неживой природы (экотоп) и биотическими - компоненты живой природы (биоценоз).

Биоценоз – совокупность представителей растительного (фитоценоз), животного (зооценоз) мира и мира микроорганизмов (микробиоценоз). Экотоп включает две главные составляющие: климат во всех его многообразных проявлениях и геологическую среду – почвы-грунты или эдафотоп. Все компоненты данной системы находятся в постоянном и сложном взаимодействии (рис. 1).

Совершенно очевидным является тот факт, что экосистема является не однородной в пространстве и времени, в связи с чем, достаточно важным является рассмотрение пространственной структуры биогеоценоза. Прежде всего это ярусное строение фитоценозов, являющееся приспособлением в борьбе за солнечный свет. В широколиственных лесах выделяют до 6 ярусов.

В пространственной структуре биогеоценоза наблюдается также мозаичность – изменение растительного и животного сообщества по площади (концентрирование растительности вокруг водоемов).

Участие различных видов в формировании экосистемы не одинаково, так в экосистеме представители одного вида могут доминировать (например: сосна обыкновенная в сосновом бору), другие могут встречаться единично (снежный барс).

Виды, которые преобладают по численности, называются доминантными . Среди них есть такие, без которых другие виды существовать не могут или эдифакторы . Второстепенные виды - малочисленные и даже редкие играют огромную роль в формировании устойчивой экосистемы. Так был установлен всемирный закон устойчивости экосистем, согласно которому: чем выше биоразнообразие экосистемы, соответственно, чем больше «второстепенных» видов, тем она устойчивее.

С точки зрения трофической структуры (от греч.trophe– питание) экосистему можно разделить на два яруса:

    верхний автотрофный (самостоятельно питающийся) ярус или «зеленый пояс», включающий растения или их части, содержащие хлорофилл, где преобладают фиксация энергии света, использование простых неорганических соединений и накопление сложных органических соединений. Организмы, входящие в «зеленый пояс», называются автотрофными (от лат.: auto-сам, trofo-питание). Основной особенностью данных организмов является способность синтезировать органические вещества из неорганических в процессе фотосинтеза. Так как, будучи автотрофами, они создают первичное органическое вещество, продуцируя его из неорганического, они носят название продуцентов .

    нижний гетеротрофный (питаемый другими) ярус, или «коричневый пояс», в котором преобладает использование, трансформация и разложение сложных соединений. Организмы, входящие в данный пояс не могут строить собственное вещество из минеральных компонентов, вынуждены использовать то, что создано автотрофами, поедая их. Они называются гетеротрофами (от лат.: hetero-другими trofo-питание).

Однако специфика гетеротрофов может быть различна. Так часть организмов, использующая в питании готовые питательные вещества растений называются фитофагами - травоядными (фитос - pастение, фагос - пожиpатель, гр.) или растительноядными. Фитофаги - вторичные аккумуляторы солнечной энергии, первоначально накопленной растениями. консументами первого порядка (например: заяц, корова). Данная группа организмов относится кпервичным консументам .

Многим животным эволюция предопределила необходимость использования животных белков. Это группа зоофагов или хищников, поедающих фитофагов и более мелких хищников. Хищники - важнейшие pегулятоpы биологического равновесия: они не только pегулиpуют количество животных-фитофагов, но выступают как санитары, поедая в первую очередь животных больных и ослабевших. Примером может служить поедание хищными птицами мышей-полевок. Данная группа организмов относится квторичным консументам . Животные, питающиеся консументами второго порядка носят название консументов третьего порядка и т.д.

В любой системе неизбежно образуются органические отходы (трупы животных, экскременты и т.п.), которые также могут служить пищей для гетеротрофных организмов, получивших название редуцентов или сапрофитов .

Поэтому с биологической точки зрения в составе экосистемы удобно выделять следующие компоненты:

    неорганические вещества (C, N, CO2, H2O и др.) включающееся в круговороты.

    органические соединения (белки, углеводы, липиды, гумусовые вещества), связывающие биотическую и абиотическую части.

    воздушную, водную и субстратную среду, включающую климатический режим и другие физические факторы.

    продуцентов, автотрофных организмов, в основном зеленые растения, которые могут производить пищу из простых неорганических веществ.

    макроконсументов или фаготрофов (от греч. phagos - пожиратель) - гетеротрофных организмов, основном животных, питающихся другими организмами или частицами органического вещества.

    микроконсументов, сапротрофов, деструктрофов - гетеротрофных организмов, в основном бактерий и грибов, получающих энергию либо путем разложения мертвых тканей, либо путем поглощения растворенного органического вещества, выделяющегося самопроизвольно или извлеченного сапротрофами из растений и других организмов.

Все организмы, входящие в состав экосистемы, связаны тесными пищевыми связями (так один организм служит пищей для другого, который поедается третьим и т.д.). таким образом, в биогеоценозе образуется цепь последовательной передачи вещества и эквивалентной ему энергии от одних организмов к другим, или так называемая трофическая цепь.

Примерами таких цепей могут служить:

    ягель олень волк (экосистема тундры);

    трава корова человек (антропогенная экосистема);

микроскопические водоросли (фитопланктон) жучки и дафнии (зоопланктон) плотва щука чайки (водная экосистема).

Одна трофичиские цепи в экосистеме тесно переплетаются, образуя трофические сети. Так широко известно явление «трофического каскада»: морские вадры питаются морскими ежами, которые едят бурые водоросли, уничтожение охотниками выдр привело к уничтожению водорослей вследствие роста популяции ежей. Когда запретили охоту на выдр, водоросли стали возвращаться на места обитания.

Значительную часть гетеротрофов составляют сапрофаги и сапрофиты (грибы), использующие энергию детрита. Поэтому различают два вида трофических цепей: цепи выедания , или пастбищные, которые начинаются с поедания фотосинтезирующих организмов, и детритные цени разложения, которые начинаются с остатков отмерших растений, трупов и экскрементов животных

Энергетика и продукция экосистемы

Основным (и практически единственным) источником энергии в экосистеме является солнечный свет. Блок-схема потоков веществ и энергии в экосистеме представлена на рис. 3.

Поток энергии направлен в одну сторону, часть поступающей солнечной энергии преобразуется сообществом и переходит на качественно более новую ступень, трансформируясь в органическое вещество, представляющее собой более концентрированную форму энергии, чем солнечный свет, но большая часть энергии деградирует, проходит через систему покидает её в виде низкокачественной тепловой энергии (тепловой сток). Следует отметить, что только около 2 % поступающей на поверхность земли энергии усваивается автотрофными организмами, большая часть (до 98%) рассеивается в виде тепловой энергии.

Рис.3. Схема потоков веществ и энергии в экосистеме.

Энергия может накапливаться, затем снова высвобождаться или экспортироваться, но её нельзя использовать вторично. В отличие от энергии, элементы питания, в том числе биогенные элементы, необходимые для жизни (углерод, азот, фосфор и т.д.), и вода могут использоваться многократно. Эффективность повторного использования и размеры импорта и экспорта элементов питания сильно варьируют в зависимости от типа экосистемы.

На функциональной схеме сообщество изображено в виде пищевой сети, образованной автотрофами и гетеротрофами, связанными между собой соответствующими потоками энергии, круговоротами биогенных элементов.

Рис. 4. Поток энергии в пищевой цепи:

ОПЭ - общее поступление солнечной энергии; НЭ - неиспользованная экосистемой энергия; С - энергия, поглощенная растениями; Н- часть энергии (с первичной продукцией), использованная организмами трофических уровней; СН - часть поглощенной энергии, рассеянная в тепловой форме; Д 1 Д 2 , Д 3 -потери энергии на дыхание; Э - потери вещества в форме экскрементов и выделений; П в - валовая продукция продуцентов; П 1 - чистая первичная продукция; П 2 и П 3 - продукция консументов; в круге показаны биоредуценты -деструкторы мертвой органики.

Трофическая цепь в биогеоценозе есть одновременно цепь энергетическая, т. е. последовательный упорядоченный поток передачи энергии Солнца от продуцентов ко всем остальным звеньям (рис. 4).

Организмы-потребители (консументы), питаясь органическим веществом продуцентов, получают от них энергию, частично идущую на построение собственного органического вещества и связывающуюся в молекулах соответствующих химических соединений, а частично расходующуюся на дыхание, теплоотдачу, выполнение движений в процессе поиска пищи, ускользания от врагов и т. п.

Таким образом, в экосистеме имеет место непрерывный поток энергии, заключающийся в передаче ее от одного пищевого уровня к другому. В силу второго закона термодинамики этот процесс связан с рассеиванием энергии на каждом последующем звене, т. е. с ее потерями и возрастанием энтропии. Понятно, что это рассеивание все время компенсируется поступлением энергии от Солнца.

В процессе жизнедеятельности сообщества создается и расходуется органическое вещество. Это значит, что каждая экологическая система обладает определенной продуктивностью.

Продуктивность экологической системы - это скорость, с которой продуценты усваивают лучистую энергию в процессе фотосинтеза и хемосинтеза, образуя органическое вещество, которое может быть использовано в качестве пищи. Различают разные уровня продуцирования органического вещества: первичная продукция, создаваемая продуцентами в единицу вре­мени, и вторичная продукция - прирост за единицу времени массы консументов. Первичная продукция подразделяется на валовую и чистую продукцию. Валовая первичная продукция - это общая масса валового органического вещества, создавае­мая растением в единицу времени при данной скорости фотосинтеза, включая и траты растения на дыхание - от 40 до 70% от валовой продукции. Та часть валовой продукции, которая не израсходована «на дыхание», называется чистой первичной продукцией, представляет собой величину прироста растений и именно эта продукция потребляется консументами и редуцентами. Вторичная продукция не делится уже на валовую и чис­тую, так как консументы и редуценты, т.е. все гетеротрофы, увеличивают свою массу за счет первичной ранее созданной продукции.

Все живые компоненты экосистемы составляют общую биомассу сообщества в целом или тех или иных групп организмов. Ее выражают в г/см 3 в сыром или сухом виде, или в энергетических единицах - в калориях, джоулях и т.п. Если скорость изъятия биомассы консументами отстает от скорости прироста растений, то это ведет к постепенному приросту биомассы продуцентов и к избытку мертвого органического вещества. Последнее приводит к заторфовыванию болот и зарастанию мелких водоемов. В стабильных сообществах практически вся продукция тратится в трофических сетях, и биомасса остается практически постоянной.

Экологические пирамиды

Функциональные взаимосвязи, т. е. трофическую структуру, можно изобразить графически, в виде так называемых экологических пирамид. Основанием пирамиды служит уровень продуцентов, а последующие уровни питания образуют этажи и вершину пирамиды. Известны три основных типа экологических пирамид: 1) пирамида чисел , отражающая численность организмов на каждом уровне (пирамида Элтона); 2) пирамида биомассы , характеризующая массу живого вещества, - общий сухой вес, калорийность и т. д.; 3) пирамида продукции (или энергии), имеющая универсальный характер, показывающая изменение первичной продукции (или энергии) на последовательных трофических уровнях.

Пирамида чисел отображает отчетливую закономерность, обнаруженную Элтоном: количество особей, составляющих последовательный ряд звеньев от продуцентов к консументам, неуклонно уменьшается (рис. 5.). В основе этой закономерности лежит, во-первых, тот факт, что для уравновешивания массы большого тела необходимо много маленьких тел; во-вторых, от низших трофических уровней к высшим теряется количество энергии (от каждого уровня до предьщущего доходитлишь 10% энергии) и, в-третьих - обратная зависимость метаболизма от размера особей (чем мельче организм, тем интенсивнее обмен веществ, тем выше скорость роста их численности и биомассы).

Рис. 5. Упрощенная схема пирамиды Элтона

Однако пирамиды численности будут сильно различаться по форме в разных экосистемах, поэтому численность лучше приводить в табличной форме, а вот - биомассу - в графиче­ской. Она четко указывает на количество всего живого вещест­ва на данном трофическом уровне, например, в единицах массы на единицу площади - г/м 2 или на объем - г/м 3 и т. д.

В наземных экосистемах действует следующее правило пирамиды биомасс : суммарная масса растений превышает массу всех травоядных, а их масса превышает всю биомассу хищников. Это правило соблюдается, и биомасса всей цепочки изменяется с изменениями величины чистой продукции, отношение годового прироста которой к биомассе экосистемы невелико и колеблется в лесах разных географических зон от 2 до 6%. И только в луговых растительных сообществах она может достигать 40-55%, а в отдельных случаях, в полупустынях - 70-75 %. На рис. 6 показаны пирамиды биомасс некоторых биоценозов. Как видно из рисунка, для океана приведенное выше правило пирамиды биомасс недействительно - она имеет перевернутый (обращенный) вид.

Рис. 6. Пирамиды биомассы некоторых биоценозов: П - продуценты; РК - растительноядные консументы; ПК - плотоядные консументы; Ф – фитопланктон; З - зоопланктон

Для экосистемы океана характерна тенденция накапливания биомассы на высоких уровнях, у хищников. Хищники живут долго и скорость оборота их генераций мала, но у продуцентов - у фитопланктонных водорослей, оборачиваемость может в сотни раз превышать запас биомассы. Это значит, что их чистая продукция и здесь превышает продукцию, поглощенную консументами, т. е. через уровень продуцентов проходит больше энергии, чем через всех консументов.

Отсюда понятно, что еще более совершенным отражением влияния трофических отношений на экосистему должно быть правило пирамиды продукции (или энергии): на каждом предыдущем трофическом уровне количество биомассы, создаваемой за единицу времени (или энергии), больше, чем на последующем.

Трофические или пищевые цепи могут быть представлены в форме пирамиды. Численное значение каждой ступени такой пирамиды может быть выражены числом особей, их биомассой или накопленной в ней энергией.

В соответствии с законом пирамиды энергий Р.Линдемана и правила десяти процентов , с каждой ступени на последующую ступень переходит приблизительно 10 % (от 7 до 17 %) энергии или вещества в энергетическом выражении (рис.7). Заметим, что на каждом последующем уровне при снижении количества энергии ее качество возрастает, т.е. способность совершать работу единицы биомассы животного в соответствующее число раз выше, чем такой же биомассы растений.

Ярким примером является трофическая цепь открытого моря, представленная планктоном и китами. Масса планктона рассеяна в океанической воде и, при биопродуктивности открытого моря менее 0,5 г/м 2 сут -1 , количество потенциальной энергии в кубическом метре океанической воды бесконечно мало в сравнении с энергией кита, масса которого может достигать нескольких сотен тонн. Как известно, китовый жир - это высококалорийный продукт, который использовали даже для освещения.

В соответствии с последней цифрой сформулировано правило одного процента : для стабильности биосферы в целом доля возможного конечного потребления чистой первичной продукции в энергетическом выражении не должно превышать 1%.

В деструкции органики тоже наблюдается соответствующая последовательность: так около 90 % энергии чистой первичной продукции освобождают микроорганизмы и грибы, менее 10 % - беспозвоночные животные и менее 1 % - позвоночные животные, являющиеся конечными косументами.

В конечном итоге все три правила пирамид отражают энер-гетические~отношения в экосистеме, а пирамида продукции (энергии) имеет универсальный характер.

В природе, в стабильных системах биомасса изменяется незначительно, т. е. природа стремится использовать полностью валовую продукцию. Знание энергетики экосистемы и количественные ее показатели позволяют точно учесть возможность изъятия из природной экосистемы того или иного количества растительной и животной биомасссы без подрыва ее продуктивности.

Человек получает достаточно много продукции от природных систем, тем не менее основным источником пищи для него является сельское хозяйство. Создав агроэкосистемы, человек стремится получить как можно больше чистой продукции растительности, но ему необходимо тратить половину растительной массы на выкармливание травоядных животных, птиц и т. д., значительная часть продукции идет в промышленность и теряется в отбросах, т. е. и здесь теряется около 90% чистой продукции и только около 10% непосредственно используется на потребление человеком.

В природных экосистемах энергетические потоки также изменяются по своей интенсивности и характеру, но этот процесс регулируется действием экологических факторов, что проявляется в динамике экосистемы в целом.

Опираясь на пищевую цепь, как основу функционирования экосистемы, можно также объяснить случаи накопления в тканях некоторых веществ (например синтетических ядов), которые по мере их движения по трофической цепи не участвуют в нормальном обмене веществ организмов. Согласно правила биологического усиления происходит примерно десятикратное увеличение концентрации загрязнителя при переходе на более высокий уровень экологической пирамиды. В частности, казалось бы незначительное повышенное содержания радионуклидов в речной воде на первом уровне трофической цепи осваивается микpооpганизмами и планктоном, затем концентpиpуется в тканях pыб и достигает максимальных значений у чаек. Их яйца имеют уровень радионуклидов в 5000 pаз больший по сравнению с фоновым загрязнением.

Виды экосистем:

Существует несколько классификаций экосистем. Во-первых экосистемы подразделяются по характеру происхождения и делятся на природные (болото, луг) и искусственные (пашня, сад, космический корабль).

По размерам экосистемы подразделяются на:

    микроэкосистемы (например, ствол упавшего дерева или поляна в лесу)

    мезоэкосистемы (лесной массив или степной колок)

    макроэкосистемы (тайга, море)

    экосистемы глобального уровня (планеты Земля)

Энергия – наиболее удобная основа для классификации экосистем. Различают четыре фундаментальных типа экосистем по типу источника энергии:

    движимые Солнцем, малосубсидируемые

    движимые Солнцем, субсидируемые другими естественными источниками

    движимые Солнцем и субсидируемые человеком

    движимые топливом.

В большинстве случаев могут использоваться и два источника энергии - Солнце и топливо.

Природные экосистемы, движимые Солнцем, малосубсидируемые - это открытые океаны, высокогорные леса. Все они получают энергию практически только от одного источника - Солнца и имеют низкую продуктивность. Ежегодное потребление энергии оценивается ориентировочно в 10 3 -10 4 ккал-м 2 . Организмы, живущие в этих экосистемах, адаптированы к скудному количеству энергии и других ресурсов и эффективно их используют. Эти экосистемы очень важны для биосферы, так как занимают огромные площади. Океан покрывает около 70 % поверхности земного шара. По сути дела, это основные системы жизнеобеспечения, механизмы, стабилизирующие и поддерживающие условия на «космическом корабле» - Земле. Здесь ежедневно очищаются огромные объемы воздуха, возвращается в оборот вода, формируются климатические условия, поддерживается температура и выполняются другие функции, обеспечивающие жизнь. Кроме того, без всяких затрат со стороны человека здесь производится некоторое количество пищи и других материалов. Следует сказать и о не поддающихся учету эстетических ценностях этих экосистем.

Природные экосистемы, движимые Солнцем, субсидируемые другими естественными источник , - это экосистемы, обладающие естественной плодородностью и производящие излишки органического вещества, которые могут накапливаться. Они получают естественные энергетические субсидии в виде энергии приливов, прибоя, течений, поступающих с площади водосбора с дождем и ветром органических и минеральных веществ и т. п. Потребление энергии в них колеблется от 1*10 4 до 4*10 4 ккал*м -2 *год -1 . Прибрежная часть эстуария типа Невской губы - хороший пример таких экосистем, которые более плодородны, чем прилегающие участки суши, получающие то же количество солнечной энергии. Избыточное плодородие можно наблюдать и в дождевых лесах.

Экосистемы, движимые Солнцем и субсидируемые человеком , - это наземные и водные агроэкосистемы, получающие энергию не только от Солнца, но и от человека в виде энергетических дотаций. Высокая продуктивность их поддерживается мышечной энергией и энергией топлива, которые тратятся на возделывание, орошение, удобрение, селекцию, переработку, транспортировку и т.п. Хлеб, кукуруза, картофель «частично сделаны из нефти». Самое продуктивное сельское хозяйство получает энергии примерно столько же, сколько самые продуктивные природные экосистемы второго типа. Их продукция достигает приблизительно 50 000 ккал*м -2 год -1 . Различие между ними заключается в том, что человек направляет как можно больше энергии на производство продуктов питания ограниченного вида, а природа распределяет их между многими видами и накапливает энергию на «черный день», как бы раскладывая ее по разным карманам. Эта стратегия называется «стратегией повышения разнообразия в целях выживания».

Индустриально-городские экосистемы, движимые топливом , - венец достижений человечества. В индустриальных городах высококонцентрированная энергия топлива не дополняет, а заменяет солнечную энергию. Пищу - продукт систем, движимых Солнцем, - в город ввозят извне. Особенностью этих экосистем является огромная потребность плотно населенных городских районов в энергии - она на два-три порядка больше, чем в первых трех типах экосистем. Если в несубсидируемых экосистемах приток энергии колеблется от 10 3 до 10 4 ккал*м -2 год -1 , а в субсидируемых системах второго и третьего типа - от 10 4 до 4*10 4 ккал*м -2 год -1 , то в крупных индустриальных городах потребление энергии достигает нескольких миллионов килокалорий на 1 м 2: Нью-Йорк -4,8*10 6 , Токио – 3*10 6 , Москва - 10 6 ккал*м -2 год -1 .

Потребление энергии человеком в городе в среднем составляет более 80 млн ккал*год -1 ; для питания ему требуется всего около 1 млн ккал*год -1 , следовательно, на все другие виды деятельности (домашнее хозяйство, транспорт, промышленность и т. д.) человек расходует в 80 раз больше энергии, чем требуется для физиологи­ческого функционирования организма. Разумеется, в развиваю­щихся странах положение несколько иное.

Подобно тому, как люди живут в домах и квартирах, так и в природе есть свои отдельные от других системы. Они обособлены и, можно сказать, самостоятельны. Они называются экосистемами и включают множество самых разных организмов. Кроме того, они подчиняются определенным законам. В данной статье мы рассмотрим, что же такое экосистемы: понятие, структура, назначение. А также расскажем, что в них входит.

Понятие

Совокупность организмов, живущих совместно в некой среде обитания и взаимодействующих друг с другом тем или иным образом, обозначается термином "экосистема". Это понятие было предложено в 1935 году английским ученым А. Тенсли. Он занимался исследованиями взаимосвязей организмов и их совместного развития. Кстати, именно он считается одним из основоположников такой науки, как экология, которая имеет дело с изучением того, что такое экосистема. Структура экосистемы представлена двумя основными компонентами: биоценозом и биотопом. Под первым понимаются сами организмы и их взаимосвязи, а под вторым - среда обитания. Как правило, в экосистеме участвует полный набор живых существ: от бактерий до высших животных. И что удивительно, все сообщество находится в равновесии, которое, нарушаясь, восстанавливается вновь, а каждый из ее участников выполняет крайне важные функции.

Биогеоценоз

Совокупность некоторых компонентов, обменивающихся энергией и способных к более или менее - это экосистема. Структура экосистемы предполагает наличие всех основных организмов: бактерий, растений, животных, грибов. Но некоторые из них могут и отсутствовать. В этой ситуации есть смысл отделить это понятие от биогеоценоза. Данный термин подразумевает сообщество, в котором есть все вышеперечисленные компоненты. Более того, биотическая структура экосистемы может включать в себя только одного участника, к примеру, только бактерий. Эта ситуация может наблюдаться в сообществах, сформировавшихся, например, на базе трупов животных. Таким образом, экосистема и биогеоценоз - это не синонимы, ведь последний является более широким понятием. Несмотря на это, их часто путают.

Классификация и структурирование

Помимо того что ученые разделяют по некоторым критериям экосистемы между собой, они также интересуются их внутренним устройством. Различные подходы и точки зрения в сумме дают достаточно полную картину, которая позволяет рассмотреть каждый элемент отдельно. Неудивительно, что в структурировании применяется столько критериев: тип питания и функции, видовая принадлежность, местонахождение участников. Разумеется, стоит рассмотреть самые важные из факторов подробнее, ведь экологическая структура экосистемы без разговора, например, о ее составе, имеет мало смысла.

Что же касается разделения сообществ между собой, как правило, главным критерием выступает преобладающая среда. Еще одной важной чертой является естественность ее происхождения и способность к автономному поддержанию функционирования. Здесь уже речь идет в первую очередь о вмешательстве в природу человеческого фактора, который тоже есть смысл обозначить более подробно, но позднее.

По функциям

Трофическая структура экосистемы разграничивает участвующие в ней организмы по типу питания. Согласно круговороту веществ в природе, ничто не берется из пустоты и не может просто так исчезнуть. Очевидно, дело лишь в том, как преображаются те или иные материи. И здесь в дело вступают две противоположные группы организмов: автотрофы и гетеротрофы. Последние - это животные и грибы, которые потребляют органику. Первые же (растения и бактерии) поступают в точности наоборот. Кстати, они в свою очередь делятся на фотосинтетиков и хемосинтетиков.

Функциональная структура экосистемы предполагает такое же деление, но под другими наименованиями. Здесь речь идет о продуцентах, редуцентах, консументах и деструкторах. Два этих подхода тесно связаны с понятием пищевых цепочек.

По иерархии

Естественно, любая система подобной сложности делится на несколько уровней. Первым и самым всеобъемлющим является уже упомянутый биоценоз, являющийся совокупностью всех участвующих живых организмов. Далее экосистем предполагает деление на фито-, зоо-, мико- и микробоценоз. Каждая из этих отдельных групп содержит совокупность, называемую популяцией. Наконец, самой мелкой единицей служит особь (или индивидуум), представляющая собой отдельный экземпляр.

Есть и функциональная иерархия. Трофическая структура экосистемы, как уже было упомянуто, предполагает разделение на продуцентов, консументов, редуцентов и деструкторов. Но и здесь есть несколько уровней. Так, все начинается с зеленых растений, которые получают минеральные вещества и воду из почвы, а также солнечный свет. Травоядные уже относятся к консументам первого уровня и потребляют зелень в пищу. В свою очередь, они служат кормом для хищников, стоящих на ступень выше. Так что и здесь видна своя особая иерархия.

По видам

Даже в пределах одного типа организмов может наблюдаться некое разнообразие, и это не вызывает удивления. Видовая структура экосистемы - ее важный показатель, отражающий соотношение тех или иных растений, животных, грибов, микроорганизмов и т. д. Эта характеристика зависит от большого числа факторов: географическое положение, климатический пояс, водный режим, возраст сообщества. Похожие видовые составы могут наблюдаться в тысячах километров друг от друга, если основные показатели в них схожи. Помимо самого наличия тех или иных организмов, важна и их численность. Наиболее распространенные в той или иной экосистеме представители живой природы называются средообразователями и, соответственно, выполняют ключевые функции и создают условия для выживания других видов.

Тем не менее, это не значит, что малочисленные участники не слишком важны. Наоборот, в ряде случаев особая биотическая структура экосистем может дать очень точную информацию о ее состоянии. Наличие редких экземпляров растений и животных может позволить понять, например, насколько чисты вода и воздух.

По пространственному признаку

На первый взгляд деление экосистем, связанное с их местонахождением, довольно очевидно. Степь, лес, пустыня, тундра, - набор живущих здесь организмов, без сомнений, будет совершенно разным. Но такая классификация уместна, только если речь идет о сравнении нескольких систем и различиях между ними.

С другой стороны, каждое отдельное сообщество будет обладать своей физической иерархией. Пространственная структура экосистемы в лесу, к примеру, легко заметна, она делится на несколько уровней. Соловьи вьют гнезда на более высоких деревьях, а трясогузки предпочитают держаться ближе к земле. Да и среди растительности неравенство очевидно: деревья, кустарники, трава и мох располагаются на совершенно разных уровнях. Ученые совокупность этих характеристик называют ярусностью, или этажностью.

Наземная экосистема

Структура экосистемы, располагающейся на суше, может быть очень разной, но практически всегда крайне интересна. Они находятся повсюду: в лесах, степях, пустынях, высоко в горах, и каждая из них по-своему любопытна. Всех их объединяет наземно-воздушная среда обитания. Между тем различий в них может быть даже больше, чем общего. Например, структура лесной экосистемы в тропиках будет совершенно непохожа на то, что наблюдается в средней полосе России. Более того, зеленый массив в Южной Америке будет разительно отличаться от картины в Юго-Западной Азии. Как уже было упомянуто, климатический пояс - это один из основных, но не единственный фактор, влияющий на то, как складывается экосистема. Структура экосистемы слишком сложна и многомерна, а потому восхитительна и загадочна.

Водная

Пресноводные и морские организмы, водоросли, планктон, медузы, глубоководные рыбы - видовая структура экосистемы, располагающейся в мировом океане, не менее занимательна, чем земная. Зачастую она может быть даже намного сложней. Структура водной экосистемы в некоторых чертах может напоминать наземную, например, здесь тоже присутствует ярусность. Но есть и очень важное отличие. Оно состоит в том, что пирамида биомассы здесь перевернута. Это означает, что первичные продуценты (здесь это разнообразный планктон) гораздо более многочисленны и размножаются быстрее, чем потребители, или консументы. В первую очередь это касается морских и океанских глубин, но и в пресноводных сообществах может наблюдаться такая же ситуация. Самое занимательное, что структура водной экосистемы включает в себя как одни из самых мелких организмов, так и самых крупных. И все они мирно живут в соседстве друг с другом.

Значение

Важность экосистем сложно переоценить. Во-первых, все они взаимосвязаны круговоротом веществ в природе. Элементы из одних систем попадают в другие, так что они еще и взаимозависимы. Во-вторых, они позволяют более или менее сохранять биоразнообразие - каждое сообщество организмов по-своему уникально, удивительно и прекрасно. Наконец, все те природные ресурсы, которые человек получает, не задумываясь, - чистая вода, сельскохозяйственные угодья, плодородная почва, свежий воздух - дает ему та или иная экосистема. Структура экосистемы, как и всей биосферы, довольно хрупка, поэтому не нужно забывать о ее роли и иногда следует задумываться о том, что планета стоит того, чтобы сберечь ее богатства для потомков.

Антропогенный фактор

Человек своей деятельностью так или иначе затрагивает практически все экосистемы. Но если влияние на некоторые из них опосредовано, то другие испытывают его напрямую. Вырубка лесов, почвы и воды, отлов рыбы и животных - все это становится серьезным испытанием для сохранения природного равновесия.

Кстати, люди продолжают учиться моделировать стабильно функционирующие экосистемы самостоятельно, а также пытаются управлять существующими. Как правило, жизненный цикл искусственно созданных сообществ не слишком велик, а стабильность вызывает массу вопросов. Тем не менее, было бы очень полезно научиться управлять экосистемами, ведь таким образом можно было бы добиться большей продуктивности сельского хозяйства, а также попытаться восстановить разрушенное. К сожалению, пока оценивается крайне негативно, ведь его действия вызывают массу последствий, в частности:

  • изменение климата вследствие сдвига в газовом составе атмосферы;
  • сокращение площадей лесов;
  • изменение и уничтожение уникальных сообществ и условий;
  • истощение природных ресурсов;
  • опустынивание и ;
  • накопление бытового мусора и загрязнение сред;
  • изменение структуры экосистем;
  • истончение озонового слоя.

Стоит задуматься над потребительским отношением человечества к планете и поразмыслить, можно ли сохранить природу в ее великолепном разнообразии. Ведь уничтожить не так уж сложно, но получится ли создать?

Случайные статьи

Вверх