Альтернативные источники энергии для дома своими руками. Виды и проблемы альтернативных источников энергии. Альтернативные источники энергии для домам Нетрадиционные источники энергии своими руками

Экологичная усадьба:Каждому жителю нашей планеты отлично известно, что запасы природного топлива не безграничны, а цены на энергоносители постоянно растут. Заменить привычные источники питания способна альтернативная энергия: своими руками можно устроить весьма эффективную установку для ее получения.

Каждому жителю нашей планеты отлично известно, что запасы природного топлива не безграничны, а цены на энергоносители постоянно растут. Заменить привычные источники питания способна альтернативная энергия: своими руками можно устроить весьма эффективную установку для ее получения. «Зеленые технологии» позволят ощутимо сократить бытовые расходы за счет использования практически бесплатных источников.

Популярные источники возобновляемой энергии

Еще с древних времен люди использовали в повседневном обиходе механизмы и устройства, действие которых было направлено на превращение в механическую энергию сил природы. Ярким примером тому являются водяные мельницы и ветряки. С появлением электричества наличие генератора позволило механическую энергию превращать в электрическую.

Водяная мельница - предшественник насоса автомата, не требующий присутствия человека для совершения работы. Колесо самопроизвольно вращается под напором воды и самостоятельно черпает воду

Сегодня значительное количество энергии вырабатывается именно ветряными комплексами и гидроэлектростанциями. Помимо ветра и воды людям доступны такие источники, как биотопливо, энергия земных недр, солнечный свет, энергия гейзеров и вулканов, сила приливов и отливов.

В быту для получения возобновляемой энергии широко используют следующие устройства:

  • Солнечные батареи.
  • Тепловые насосы.
  • Ветрогенераторы.

Высокая стоимость, как самих устройств, так и проведения монтажных работ, останавливает многих людей на пути к получению вроде бы бесплатной энергии. Окупаемость может достигать 15-20 лет, но это не повод лишать себя экономических перспектив. Все эти устройства можно изготовить и установить самостоятельно.

При выборе источника альтернативной энергии нужно ориентироваться на ее доступность, тогда максимальная мощность будет достигнута при минимуме вложений

Солнечные панели собственноручного изготовления

Готовая солнечная панель стоит немалых денег, поэтому ее покупка и установка по карману далеко не каждому. При самостоятельном изготовлении панели расходы можно снизить в 3-4 раза. Прежде чем приступить к устройству солнечной панели нужно разобраться, как все это работает.

Система солнечного электроснабжения: принцип работы

Понимание назначения каждого из элементов системы позволит представить ее работу в целом. Основные составляющие любой системы солнечного электроснабжения:

  • Солнечная панель. Это комплекс соединенных в единое целое элементов, преобразующих солнечный свет в поток электронов. Их основная особенность состоит в том, что они не могут вырабатывать ток высокого напряжения. Отдельный элемент системы способен вырабатывать ток напряжением 0,5-0,55 В. Соответственно одна солнечная батарея способна вырабатывать ток напряжением 18-21 В, что достаточно для зарядки 12-вольтовой аккумуляторной батареи.
  • Аккумуляторы. Одной батареи надолго не хватит, поэтому система может насчитывать до десятка таких устройств. Количество аккумуляторных батарей определяется мощностью потребляемой электроэнергии. Количество аккумуляторных батарей можно будет увеличить в будущем, добавив в систему необходимое количество солнечных панелей;
  • Контроллер солнечного заряда. Это устройство необходимо для обеспечения нормальной зарядки аккумуляторной батареи. Основное его назначение состоит в недопущении повторной перезарядки батареи.
  • Инвертор. Прибор, требующийся для преобразования тока. Аккумуляторные батареи выдают ток низкого напряжения, а инвертор преобразует его в ток необходимого для функционала высокого напряжения – выходная мощность. Для дома достаточно будет инвертора с выдаваемой мощностью 3-5 кВт.

Если инвертор, аккумуляторные батареи и контроллер заряда лучше приобрести готовыми, то солнечные батареи вполне возможно сделать самому.


Качественный контроллер и правильность подключения помогут как можно дольше сохранять работоспособность аккумуляторных батарей и автономность всей солнечной станции в целом

Изготовления солнечной батареи

Для изготовления батареи необходимо приобрести солнечные фотоэлементы на моно- либо поликристаллах. При этом нужно учесть, что срок службы поликристаллов значительно меньше, чем у монокристаллов. Кроме того КПД поликристаллов не превышает 12%, тогда как этот показатель у монокристаллов достигает 25%. Для того, чтобы сделать одну солнечную панель необходимо купить как минимум 36 таких элементов.

Солнечную батарею собирают из модулей. Каждый модуль для бытового использования включает 30, 36 или 72 шт. элементов, соединенных последовательно с источником питания с максимальным напряжением около 50 V

Корпус солнечной панели

Начинаются работы с изготовления корпуса, для этого потребуются следующие материалы:

  • Деревянные бруски
  • Фанера
  • Оргстекло
  • ДВП

Из фанеры необходимо вырезать днище корпуса и вставить его в рамку из брусков толщиной 25 мм. Размер днища определяется количеством солнечных фотоэлементов и их размером. По всему периметру рамки в брусках с шагом 0,15-0,2 м необходимо высверлить отверстия диаметром 8-10 мм. Они требуются для предотвращения перегрева элементов батареи во время работы.

Устройство солнечной панели

По размеру корпуса необходимо при помощи канцелярского ножа вырезать из ДВП подложку для солнечных элементов. При ее устройстве также нужно предусмотреть наличие вентиляционных отверстий, устраиваемых через каждые 5 см квадратно-гнездовым способом. Готовый корпус нужно дважды покрасить и высушить.

Солнечные элементы следует вверх ногами выложить на подложку из ДВП и выполнить распайку. Если готовые изделия уже не были оснащены припаянными проводниками, то работа существенно упрощается. Однако процесс распайки предстоит выполнить в любом случае.

Нужно помнить, что соединение элементов должно быть последовательным. Изначально элементы следует соединять рядами, а уже потом готовые ряды объединять в комплекс путем присоединения к токоведущим шинам. По завершению элементы нужно перевернуть, уложить как положено и зафиксировать на своих местах при помощи силикона.


Каждый из элементов нужно надежно зафиксировать на подложке с помощью скотча либо силикона, в будущем это позволит избежать нежелательных повреждений (+)

После чего надо проверить величину выходного напряжения. Ориентировочно оно должно находиться в пределах 18-20 В. Теперь батарею следует обкатать в течение нескольких дней, проверить способность зарядки аккумуляторных батарей. Только после контроля работоспособности производится герметизация стыков.

Убедившись в безукоризненном функционале, можно выполнить сборку системы электроснабжения. Входные и выходные контактные провода нужно вывести наружу для последующего подключения прибора. Из оргстекла следует вырезать крышку и закрепить ее саморезами к бортикам корпуса через предварительно просверленные отверстия.

Вместо солнечных элементов для изготовления батареи можно использовать диодную цепь с диодами Д223Б. Панель из 36 последовательно соединенных диодов способна выдавать напряжение 12 В.

Диоды нужно предварительно замочить в ацетоне для удаления краски. В пластиковой панели следует высверлить отверстия, вставить диоды и произвести их распайку. Готовую панель необходимо поместить в прозрачный кожух и герметизировать.

Правильно ориентированные и установленные солнечные панели обеспечивают максимальную эффективность получения солнечной энергии, а также легкость и простоту обслуживания системы

Основные правила установки солнечной панели

От правильности установки солнечной батареи во многом зависит эффективность работы всей системы. При установке нужно учесть следующие важные параметры:

  1. Затенение. Если батарея будет находиться в тени деревьев или более высоких сооружений, то она не только не будет нормально функционировать, но и может выйти из строя.
  2. Ориентация. Для максимального попадания солнечных лучей на фотоэлементы батарею необходимо направить в сторону солнца. Если Вы живете в северном полушарии, то панель должна быть ориентирована на юг, если же в южном, то наоборот.
  3. Наклон. Этот параметр определяется географическим положением. Специалисты рекомендуют устанавливать панель под углом, равным географической широте.
  4. Доступность. Нужно постоянно следить за чистотой лицевой стороны и вовремя удалять слой пыли и грязи. А в зимнее время панель периодически необходимо очищать от налипающего снега.

Желательно, чтобы при эксплуатации солнечной панели угол наклона не был постоянным. Прибор будет работать по максимуму только в случае прямо направленных на его крышку солнечных лучей. Летом его лучше располагать под уклоном в 30º к горизонту. В зимнее время рекомендовано приподнимать и устанавливать на 70º.

В ряде промышленных вариантов солнечных батарей предусмотрены устройства слежения за движение солнца. Для бытового применения можно продумать и предусмотреть подставки, позволяющие менять угол наклона панели

Тепловые насосы для отопления

Тепловые насосы являются одним и из наиболее прогрессивных технологических решений в получении альтернативной энергии для вашего дома. Они не только наиболее удобны, но и экологически безопасны. Их эксплуатация позволит существенно снизить расходы, связанные с оплатой на охлаждение и обогрев помещения.

Классификация тепловых насосов

Тепловые насосы классифицирую по количеству контуров, источнику энергии и способу ее получения. В зависимости от конечных потребностей тепловые насосы могут быть:

  • Одно-, двух или трехконтурные;
  • Одно- или двухконденсаторные;
  • С возможностью нагрева или с возможностью нагрева и охлаждения.

По виду источника энергии и способу ее получения различают следующие тепловые насосы:

  • Грунт – вода. Применяются в умеренном климатическом поясе с равномерным прогревом земли вне зависимости от времени года. Для монтажа используют коллектор либо зонд в зависимости от типа грунта. Для бурения неглубоких скважин не требуется получения разрешительных документов.
  • Воздух – вода. Тепло аккумулируется из воздуха и направляется на нагрев воды. Установка будет уместной в климатических зонах с зимней температурой не ниже -15 градусов.
  • Вода – вода. Монтаж обусловлен наличием водоемов (озера, реки, грунтовые воды, скважины, отстойники). Эффективность такого теплового насоса является весьма внушительной, что обусловлено высокой температурой источника в холодное время года.
  • Вода – воздух. В данной связке в роли источника тепла выступают те же водоемы, но при этом тепло посредством компрессора передается непосредственно воздуху, используемому для обогрева помещений. В данном случае вода не выступает в качестве теплоносителя.
  • Грунт – воздух. В данной системе проводником тепла является грунт. Тепло из грунта через компрессор передается воздуху. В роли переносчика энергии применяют незамерзающие жидкости. Данная система считается наиболее универсальной.
  • Воздух – воздух. Работа данной системы сходна с работой кондиционера, способного обогревать и охлаждать помещение. Данная система является наиболее дешевой, так как не требует производства земляных работ и прокладки трубопроводов.

При выборе вида источника тепла нужно ориентироваться на геологию участка и возможность беспрепятственного проведения земляных работ, а также на наличие свободной площади. При дефиците свободного места придется отказаться от таких источников тепла, как земля и вода и забирать тепло из воздуха.

Принцип работы теплового насоса

Принцип работы тепловых насосов основан на использовании цикла Карно, который в результате резкого сжатия теплоносителя обеспечивает повышение температуры. По такому же принципу, но с противоположным эффектом, работает большинство климатических устройств с компрессорными установками (холодильник, морозильная камера, кондиционер).

Главный рабочий цикл, который реализуется в камерах данных агрегатов, полагает обратный эффект – в результате резкого расширения происходит сужение хладагента.
Именно поэтому один из наиболее доступных методов изготовления теплового насоса основан на использовании отдельных функциональных узлов, используемых в климатическом оборудовании.

Так, для изготовления теплового насоса может быть использован бытовой холодильник. Его испаритель и конденсатор будут играть роль теплообменников, отбирающих тепловую энергию из среды и направляющие ее непосредствен на нагрев теплоносителя, который циркулирует в системе отопления.


Низкопотенциальное тепло из грунта, воздуха или воды вместе с теплоносителем попадает в испаритель, где превращается в газ, а далее еще больше сжимается компрессором, в результате чего температура становится еще выше (+)

Тепловой насос с узлами от бытовой техники

Работы начинаются с подготовки компрессорной части насоса, функции которой будут отведены соответствующему узлу кондиционера либо холодильника. Данный узел необходимо закрепить с помощью мягкой подвески на одной из стен рабочего помещения там, где это будет удобно.

После этого необходимо изготовить конденсатор. Для этого идеально подойдет бак из нержавеющей стали объемом 100 л. В него необходимо вмонтировать змеевик (можно взять готовую медную трубку от старого кондиционера либо холодильника. Подготовленный бак нужно с помощью болгарки разрезать вдоль на две равные части – это необходимо для установки и закрепления змеевика в теле будущего конденсатора.

После монтажа змеевика в одной из половинок обе части емкости нужно соединить и сварить между собой таким образом, чтобы получился замкнутый бак. Учтите, что при сварке нужно использовать специальный электроды, а еще лучше применять аргоновую сварку, только она может обеспечить максимальное качество шва.

Для изготовления конденсатора использован бак из нержавеющей стали объемом 100 л, с помощью болгарки он был разрезан пополам, вмонтирован змеевик и произведена обратная сварка

Для изготовления испарителя потребуется герметичный пластиковый бак объемом 75-80 литров, в который нужно будет поместить змеевик из трубы диаметром ¾ дюйма.

Для изготовления змеевика достаточно обмотать медную трубку вокруг стальной трубы диаметром 300-400 мм с последующей фиксацией витков перфорированным уголком

На концах трубки необходимо нарезать резьбу для последующего обеспечения соединения с трубопроводом. После завершения сборки и проверки герметизации испаритель следует закрепить на стене рабочего помещения при помощи кронштейнов соответствующего размера.

Завершение сборки лучше доверить специалисту. Если часть сборки можно выполнить самостоятельно, то с пайкой медных труб и закачкой хладагента должен работать профессионал. Сборка основной части насоса заканчивается подключением обогревательных батарей и теплообменника. Нужно отметить, что данная система является маломощной. Поэтому будет лучше, если тепловой насос станет дополнительной частью существующей системы отопления.

Обустройство и подключение внешнего устройства

В качестве источника тепла лучше всего подойдет вода из колодца или скважины. Она никогда не замерзает и даже зимой ее температура редко опускается ниже +12 градусов. Потребуется устройство двух таких скважин. Из одной скважины будет происходить забор воды с последующей подачей в испаритель. Далее отработанная вода будет сбрасываться во вторую скважину. Остается все это подключить к входу в испаритель, к выходу и герметизировать.

В принципе, система готова к эксплуатации, но для ее полной автономности потребуется система автоматики, контролирующая температуру движущегося теплоносителя в отопительных контурах и давление фреона. На первых порах можно обойтись обыкновенным пускателем, но следует учесть, что запуск системы после отключения компрессора можно выполнять через 8-10 минут – это время необходимо для выравнивания давления фреона в системе.

Ветрогенераторы дают киловатты электроэнергии

Энергию ветра использовали еще наши предки. С тех далеких времен, в принципе, ничего не изменилось. Отличие состоит лишь в том, что жернова мельницы заменены генератором и приводом, обеспечивающими преобразование механической энергии лопастей в электрическую энергию.

Установка ветрогенератора считается экономически выгодной, если среднегодовая скорость ветра превышает 6 м/с. Установку лучше всего производить на возвышенностях и равнинах, идеальными местами считаются побережья рек и крупных водоемов вдали от различных инженерных коммуникаций.

Классификация ветряных генераторов

Классификация ветряных генераторов зависит от следующих основных параметров:

  • В зависимости от размещения оси могут быть вертикальными и горизонтальными. Горизонтальная конструкция предусматривает возможность автоповорота основной части для поиска ветра. Основное оборудование вертикального ветрогенератора расположено на земле, поэтому его легче обслуживать, при этом КПД вертикально расположенных лопастей ниже.
  • В зависимости от количества лопастей различают одно-, двух-, трех- и многолопастные ветряные генераторы. Многолопастные ветрогенераторы используют при малой скорости воздушного потока, применяются редко из-за необходимости установки редуктора.
  • В зависимости от материала, используемого для изготовления лопастей, лопасти могут быть парусными и жесткими. Лопасти парусного типа просты в изготовлении и монтаже, но требуют частой замены, так как быстро выходят из строя под воздействием резких порывов ветра.
  • В зависимости от шага винта, различают изменяемый и фиксируемый шаги. При использовании изменяемого шага можно добиться значительного увеличения диапазона рабочих скоростей ветрогенератора, но это приведет к неминуемому усложнению конструкции и увеличению ее массы.

Мощность всех видов приборов, преобразующих энергию ветра в электрический аналог, зависит от площади лопастей.

Для работы ветрогенераторам практически не нужны классические источники энергии. Использование установки мощностью около 1 мВт позволит сэкономить 92 000 баррелей нефти или 29 000 т угля за 20 лет

Устройство ветряного генератора

В любой ветряной установке присутствуют следующие основные элементы:

  • Лопасти, вращающиеся под действием ветра и обеспечивающие движение ротора;
  • Генератор, который вырабатывает переменный ток;
  • Контроллер управления лопастями, отвечает за образование переменного тока в постоянный, который требуется для зарядки аккумуляторов;
  • Аккумуляторные батареи, нужны для накопления и выравнивания электрической энергии;
  • Инвертор, выполняет обратное превращение постоянного тока в переменный, от которого работают все бытовые приборы;
  • Мачта, необходима для подъема лопастей над поверхностью земли до достижения высоты перемещения воздушных масс.

При этом генератор, лопасти и мачта считаются основными частями ветрогенератора, а все остальное – дополнительные компоненты, обеспечивающие надежную и автономную работу системы в целом

Тихоходный ветряной генератор из автогенератора

Считается, что данная конструкция является наиболее простой и доступной для самостоятельного изготовления. Она может стать как самостоятельным источником энергии, так и взять на себя часть мощности существующей системы электроснабжения. При наличии автомобильного генератора и аккумуляторной батареи все остальные части можно изготовить из подручных материалов.

Изготовление ветрового колеса

Лопасти считаются одной из наиболее важных частей ветрогенератора, так как их конструкцией определяется работа остальных узлов. Для изготовления лопастей могут быть использованы самые разные материалы – ткань, пластик, металл и даже дерево. Мы изготовим лопасти из канализационной пластиковой трубы. Основные преимущества данного материала – дешевизна, высокая влагоустойчивость, простота обработки. Работы выполняются в следующем порядке:

  1. Производится расчет длины лопасти, при этом диаметр пластиковой трубы должен составлять 1/5 от необходимого метража;
  2. С помощью лобзика трубу следует разрезать вдоль на 4 части;
  3. Одна часть станет шаблоном для изготовления всех последующих лопастей;
  4. После обрезки трубы заусеницы на краях необходимо обработать наждачной бумагой;
  5. Вырезанные лопасти необходимо зафиксировать на заранее приготовленном алюминиевом диске с предусмотренным креплением;
  6. Также к этому диску после переделки нужно прикрутить генератор.

Учтите, что труба из ПВХ не обладает достаточной прочностью и не сможет противостоять сильным порывам ветра. Для изготовления лопастей лучше всего применять трубу из ПВХ толщиной не менее 4 см. Далеко не последнюю роль на величину нагрузки оказывает размер лопасти. Поэтому не лишним будет рассмотреть вариант снижения размера лопасти за счет увеличения их количества.

После сборки следует произвести балансировку ветрового колеса. Для этого требуется закрепить его горизонтально на штативе в закрытом помещении. Результатом правильной сборки будет неподвижность колеса. Если же происходит вращение лопастей, необходимо выполнить их подточку абразивом доя уравновешивания конструкции.

Изготовление мачты ветрогенератора

Для изготовления мачты можно использовать стальную трубу диаметром 150-200 мм. Минимальная длина мачты должна составлять 7 м. Если на участке есть препятствия для перемещения воздушных масс, то колесо ветрогенератора нужно поднять на высоту, превышающую препятствие не менее, чем на 1 м.

Колышки для закрепления растяжек и саму мачту необходимо забетонировать. В качестве растяжек можно использовать стальной либо оцинкованный трос толщиной 6-8 мм.

Переоборудование автомобильного генератора

Переделка состоит лишь в перемотке провода статора, а также в изготовлении ротора с неодимовыми магнитами. Для начала нужно высверлить отверстия, необходимые для фиксации магнитов в полюсах ротора. Установка магнитов выполняется с чередованием полюсов. По завершению работ межмагнитные пустоты нужно заполнить эпоксидной смолой, а сам ротор обернуть бумагой.

При перемотке катушки нужно учесть, что эффективность работы генератора будет зависеть от количества витков. Катушку необходимо мотать по трехфазной схеме в одном направлении. Готовый генератор нужно испытать, результатом правильно выполненной работы будет показатель в 30 В при 300 оборотах генератора.


Переоборудованный генератор готов к проведению испытаний по выдаваемому номинальному напряжению перед финальным монтажом всей системы тихоходного ветрогенератора

Завершение сборки тихоходного ветрогенератора

Поворотная ось генератора выполняется из трубы с насаженными двумя подшипниками, а хвостовая часть вырезается из оцинкованного железа толщиной 1,2 мм. Перед креплением генератора к мачте необходимо изготовить раму, лучше всего для этого подойдет профильная труба. При выполнении крепления нужно учесть, что минимальное расстояние от мачты до лопасти должно быть больше 0,25 м.


Под действием потока ветра происходит движение лопастей и ротора, в результате достигается вращение редуктора и получается электрическая энергия (+)

Для работы системы после ветрогенератора нужно установить контроллер заряда, аккумуляторные батареи, а также инвертор. Емкость батареи определяется мощностью ветрогенератора. Данный показатель зависит от размеров ветряного колеса, количества лопастей и скорости ветра.

Отличительной особенностью альтернативных источников энергии является их экологическая чистота и безопасность. Довольно малая мощность установок и привязка к определенным условиям местности позволяют эффективно эксплуатировать только комбинированные системы традиционных и альтернативных источников. опубликовано

Экология потребления.Усадьба:Сегодня мы поговорим об альтернативных источниках энергии. Тарифы на электроэнергию растут день ото дня. А в некоторый районах подключиться к магистральным сетям и вовсе практически нет возможностей, так как стоимость проводки и монтажа оказывается непомерно высока.

Когда не помогает технический прогресс, человечество начинает задумываться о природных источниках необходимой энергии, благодаря которым можно обогреть и осветить свой дом. Вот основные из них:

  • биоотходы,
  • энергия ветра,
  • тепловые насосы,
  • солнечная энергия.

Рассмотрим идею создания генератора из биоотходов. Действие его будет аналогично природному газу: отходы помещают в закрытую емкость, в результате их разложения выделяются метан и сероводород с углекислотой. Такие источники энергии используются на животноводческих фермах, и тем, кто желает перенять опыт, необходимо либо иметь собственное хозяйство, либо регулярно получать его отходы, и где-то их хранить. Хозяйством занимаются многие, у кого есть частные дома (например, держат кур), так что попробовать вполне можно.

Для создания генератора нужна емкость, которая будет герметично закрываться. В ней должен быть смонтирован специальный шнек для того, чтобы перемешивать отходы. Также, помимо отверстия для загрузки биоматериала, необходима трубка для отвода газа и штуцер для выемки отработанных отходов. Кстати, их можно использовать для удобрения земли и получения хорошего урожая. Повторюсь, что герметичность емкости крайне обязательна, иначе никакой энергии создать не получится. Если емкость не будет использоваться постоянно, то в ней нужен будет еще и клапан для сброса давления.

Итак, подберите размер емкости в зависимости от того, какое количество биоматериала вы планируете использовать. Выберите место для установки конструкции. Имейте в виду, что 1 тонна отходов ориентировочно дает 100 кубов газа. Дабы процесс развивался более динамично - необходимо организовать подогрев емкости. Для этого вам понадобится либо змеевик, либо установка ТЭНа. Бактерии, содержащиеся в отходах, становятся активными при нагревании.

Когда емкость нагреется до нужной температуры - подогрев должен отключиться автоматически. Газ, который получится при этом, преобразовывается в электричество через газовый генератор.

Чтобы использовать энергию ветра, также понадобится генератор, аккумулятор с контроллером для измерения уровня заряда и преобразователь напряжения. Все схемы ветрогенераторов работают по единому принципу. На собранную раму крепятся поворотный узел, лопасти и генератор на станине. Затем монтируется лопата с пружинной стяжкой. Генератор соединяют с поворотным узлом и устанавливают токосъемник. Далее провода подводят к батарее. При выборе пропеллера обратите внимание на его диаметр: от этой величины зависит, какое количество лопастей будет оптимальным для вашего ветрогенератора, и собственно - какое количество энергии он сможет генерировать.

Как вы видите, ничего сложного в монтаже и установке генераторов электроэнергии нет. Необходима, конечно, определенная сноровка, но чего не сделаешь в целях экономии средств! Помните только, что источники энергии (биоотходы и ветер) также должны быть постоянными.

Следующий вид альтернативного источника энергии - тепловой насос. Его устройство сложнее, а монтаж более затратный, поскольку предполагает бурение скважин на участке. Поэтому вряд ли он подойдет неискушенному владельцу загородного дома. Кроме того, будет необходим еще и водоем.

Остановимся лучше кратко на солнечных батареях. Их собрать немного проще, потому, что можно купить готовые фотоэлементы. На них есть отметки о мощности в вольт-амперах, поэтому вы сможете рассчитать, какое количество фотоэлементов вам необходимо.

Чтобы собрать корпус солнечной батареи вам понадобится лист фанеры. К нему вы прибьете деревянные рейки и просверлите отверстия для вентиляции. Внутрь необходимо поместить лист ДВП, на котором будет размещена уже готовая (спаянная) цепь фотоэлементов. Останется только проверить работоспособность цепи и прикрутить оргстекло. Вот, пожалуй, и все.

Как вы видите - особых трудозатрат при этом не требуется, равно как и не требуется научной степени по физике. И еще можно совместить работу нескольких вариантов электрогенераторов. В общем, чтобы создать на своем участке альтернативный источник энергии нужно немного смекалки и ясная голова. опубликовано

Примеры использования альтернативной энергии в виде готовых решений и устройств своими руками

Запасы углеводородов на нашей планете рано или поздно закончатся. Даже с учётом внедрения различных технологий по их экономии, истощение запасов угля, нефти и газа не за горами. Стоимость энергоносителей растёт и люди понимают, что о сохранности своего бюджета позаботиться могут только они сами. Поэтому обращают внимание на альтернативные источники энергии. Кроме того, интерес к альтернативной энергетике вызывается и банальным отсутствием в некоторых местах «благ цивилизации» в виде газа и электроэнергии. Часто получается так, что подвод электричества или газа в некоторые населённые пункты экономически не оправдан, а за свой счёт жители этого сделать не могут. Поэтому владельцы частных домов делают своими руками или приобретают различные установки для получения тепла и электричества. Ведь энергия содержится в солнечном свете, ветре, недрах Земли, приливах и отливах. Кроме того, используют разницу температур, энергию падающей воды и прочие источники альтернативной энергии. В этом материале мы поговорим о разных интересных установках в области альтернативной энергетики, сделанных своими руками.

Как вы знаете, окружающая природа полна энергии. Наверняка, все слышали о том, что можно достаточно эффективно использовать солнечный свет, ветер, приливов, отлив и другие возобновляемые источники энергии. Причём эту энергию можно использовать в масштабах целой страны, а можно только для обеспечения энергией частного дома или дачи.

Ниже приведены некоторые примеры установок, позволяющих преобразовывать альтернативную энергию в свет и тепло:

  • Солнечная панель;
  • Установка для получения биогаза;
  • Ветряной генератор.
Если у вас есть в наличии свободные средства, то можно приобрести такие установки и оплатить монтаж. Благодаря наличию устойчивого спроса на такие установки производители за рубежом и в России наладили выпуск подобной продукции. Но если вы ограничены в средствах, то можно попробовать сделать такие установки своими руками.

Давайте разберём некоторые примеры.

Принцип действия всех разновидностей тепловых насосов базируется на циклах Карно. Установка представляет собой холодильник. В процессе работы он забирает низкопотенциальную энергию при её охлаждении. А затем проводит её преобразование в тепловую энергию с высоким потенциалом. В роли окружающей среды могут выступать воздух, земля, вода. Эти вещества в любой момент содержат определённое количество тепла. В состав теплового насоса входят следующие основные узлы:

  • Наружный контур, в котором находится природный теплоноситель;
  • Внутренний контур, заполненный водой;
  • Компрессор;
  • Испаритель;
  • Конденсатор.

Как и в бытовом холодильнике в таких системах используется фреон. Наружный контур, как правило, погружают в скважину с водой или просто в водоём на поверхности. Есть варианты, когда наружный контур закапывается в землю. Но это дорого стоит и не всегда можно осуществить.



Существуют готовые решения тепловых насосов, а есть те модели, которые делаются своими руками. Как сделать это устройство для использования альтернативной энергии своими руками? Для начала нужно найти компрессор. Если есть старый кондиционер или холодильник, можно снять с них. Мощность, требуемая на нагрев, составляет до 10 кВт.

Коллектор теплового насоса может быть установлен как горизонтально, так и вертикально. Второй вариант используется, если места недостаточно. Тогда делается бурение несколько скважин, в которые и опускается контур. Если расположение горизонтальное, то коллектор закапывается в землю примерно на 1,5 метра. Теплообменник в воде делается тогда, когда обогреваемое жильё находится у берега природного водоёма. Для конденсатора потребуется ёмкость объёмом 120─140 литров. В неё помещается змеевик из меди, где циркулирует фреон.

Испаритель может быть выполнен их пластиковой ёмкости того же объёма, что и конденсатор. В него вставляется медный змеевик, который совмещается через компрессор с тем, что находится в конденсаторе.

При изготовлении системы своими руками патрубок для испарителя обычно выполняется из куска канализационной трубы. С помощью патрубка выполняется регулирование поступления воды. Испаритель опускают в водоём. При его обтекании вода запускает процесс испарение фреона. Тот, в свою очередь, поднимается наверх в конденсатор. Там он отдаёт тепловую энергию воде, в которой находится змеевик. Эта вода обогревает дом, циркулируя в отопительной системе.

Стоит отметить, что температура воды в водоёме не столь важна. Главное, чтобы она там была постоянно. Если насос спроектирован и смонтирован правильно, то может обогревать дом зимой. Даже если температура воды в водоёме будет очень низкой. Летом тепловой насос может выступить в роли кондиционера для охлаждения помещения.

Солнечные батареи

Это, пожалуй, наиболее распространённый вариант использования альтернативной энергии. В этом случае источников альтернативной энергии является солнечный свет, а преобразуется он в электрический ток. можно посмотреть по ссылке.



Солнечные батареи предлагаются в составе готовых решений и их можно изготовить своими руками. Если это установки фабричного производства, то, как правило, в комплекте идёт контроллер, инвертор, иногда аккумуляторы, необходимые провода и крепёж. Хотя можно встретить немало предложений, когда солнечные панели продаются отдельно.

Что касается изготовления солнечных батарей своими руками, то для многих это занятие стало настоящим хобби. Иногда даже проводятся выставки по тематике использования альтернативной энергии. На них энтузиасты показывают солнечные батареи, которые сделали своими руками.

Для самостоятельного изготовления гелиопанелей нужно купить фотоэлементы (на моно или поликристаллах) и спаять их в последовательную цепь. Количество элементов определяется требуемым напряжением и мощностью на выходе батареи. Изготовить фотоэлементы своими руками не получиться. Технология сложная и реализовать её можно лишь в фабричных условиях.

Итак, что необходимо сделать по шагам:

  • Спаять в последовательную цепь фотоэлементы;
  • Закрепить их на стеле, поликарбонате или другом материале, пропускающем солнечный свет. Исполнение бывает разным. Фотоэлементы располагаются между стёклами, а стыки изолируются. Иногда элементы просто закрепляют на стекле защитной автомобильной плёнкой;
  • Изготовить корпус для батареи из алюминиевых уголков;
  • Установить панель с фотоэлементами в корпус;
  • Соединить панель с другими элементами гелиосистемы.

Биогаз представляет собой чистый вид топлива, получаемый без ущерба для окружающей среды. Технология его получения основывается на деятельности анаэробных бактерий. В качестве сырья для синтеза биогаза используются пищевые отходы.

Отходы как жидкие, так и твёрдые помещаются в ёмкость. Это должна быть герметичная ёмкость, которая оснащена шнеком. Он используется для перемешивания этой массы. Кроме того, должны быть предусмотрены:

  • Вход для загрузки отходов;
  • Выход для остатков отходов, которые не были переработаны;
  • Патрубок для отвода газа.


Герметичность установки должна быть проведена особенно тщательно. Если газ из ёмкости планируется отбирать периодически, то нужно предусмотреть специальный клапан. С его помощью вы сможете сбросить избыточное давление, если необходимо. При разложении биологических отходов в этой установке выделяется сероводород и метан, в составе которых присутствует углекислота.

Вообще, создание установки для синтеза биогаза своими руками непростая задача. Обычно на практике используются готовые решения, но некоторые умельцы самостоятельно делают такие установки для получения альтернативной энергии. Для этого следует решить несколько задач, изложенных ниже:

  • Нужно обустроить место для ёмкости. Её объём выбирается исходя из того, сколько будет одновременно перерабатываться отходов. Чтобы обеспечить эффективную работу установки, нужно заполнить её на 2/3. Сама ёмкость может быть из металла или из бетона. Что касается производительности, то 100 м3 газа получаются из 1 тонны пищевых отходов ;
  • Организовать подогрев. Для ускорения процесса ёмкость с отходами должна подогреваться. Здесь может быть несколько вариантов. К примеру, змеевик вокруг ёмкости или ТЭН под ёмкостью. Анаэробные бактерии становятся активными при нагреве до определённой температуры. Поэтому обогрев необходим;
  • Автоматика. Обогрев должен включаться, когда загружается новая партия отходов и выключаться при достижении определённой температуры;
  • Нужен газовый электрогенератор для преобразования полученного биогаза;
  • Следует организовать сбор отработанного сырья отходов. Эти отходы можно использовать для удобрения на садовых грядках.

Такие установки для генерации биогаза применяются в США и Китае в различных частных хозяйствах и на фермах. Здесь основная проблема в том, чтобы организовать беспрерывное получение биогаза. А для этого потребуется постоянный поток пищевых отходов или навоза.

Электроэнергия - это один из важнейших источников питания для частного дома. Электричество помогает в приготовлении пищи, отоплении помещения, закачке в него воды и в простом освещении. Оно в состоянии полностью заменить газоснабжение и центральный водопровод. Без электричества современный дом не считается благоустроенным и функциональным. Высоковольтные линии дотягиваются даже до самых отдаленных сел и поселков, снабжая их электричеством. Но все же остаются места, куда коммуникации не проложены, а монтаж их обойдется в приличную сумму. В данной ситуации выручат альтернативные источники энергии. Они экологически безопасны, полностью автономны и финансово выгодны. Владелец собственного источника электрической энергии не зависит от плановых ремонтных работ, поломок и веерных отключений, которые оставляют без света целые поселки. Самые распространенные и не совсем привычные нетрадиционные источники энергии подробно рассмотрены ниже.

Электрогенераторы

Первый и самый популярный источник энергии дома, который чаще всего встречается в частных домах - электрогенераторы. По типу используемого горючего они разделяются на дизельные, бензиновые и газовые.

Дизельные генераторы имеют массу преимуществ, среди них экономичность, надежность и низкий риск возникновения пожара. При регулярном ежедневном использовании дизельный генератор гораздо выгодней моделей с потреблением газа или бензина. Расход топлива у дизельного оборудования не велик, цена на топливо также не высока, он не требует дорогостоящих ремонтов и денежных вложений. Недостатки дизельных генераторов - большое количество выделяемых при работе газов, шум и высокая цена на сам аппарат. Цена оборудования с мощностью 5 кВт в среднем составляет 850 $.

Бензиновый генератор - данный аппарат идеально подходит как резервный или сезонный источник тока. Генераторы на таком типе топлива имеют небольшие размеры, издают мало шума при работе, сам аппарат имеет более низкую цену, чем дизельный аналог. Средняя цена бензинового генератора мощностью 5 кВт составляет 500 $. Недостатки использования бензинового электрогенератора - уровень шума хоть и низок, но он есть, во время работы выделяется большое количество углекислого газа, потому прибор необходимо размещать в отдельных комнатах с хорошей звукоизоляцией.

Газовые генераторы электричества зарекомендовали себя хорошо со всех сторон. Работают они как от природного газа, так и от сжиженного топлива в баллонах. Уровень шума у данных приборов самый низкий, моторесурс очень высок. Средняя цена на прибор мощностью 5 кВт составляет 600 $.

Использование солнечной энергии

Еще один альтернативный источник электрической энергии - энергия солнца. Используют ее не только для выработки электрической энергии, но и для обеспечения автономного отопления. Для получения электроэнергии от солнца устанавливаются солнечные батареи различной площади, которые оборудуются аккумулятором и инвертором. Среди преимуществ использования источников электричества на солнечной энергии значится:

  • Способность возобновляться.
  • Абсолютная бесшумность в работе.
  • Безопасность для здоровья человека и для окружающей среды, так как используемые в данной технологии приборы не выбрасывают в атмосферу никаких веществ.
  • Простота монтажа при самостоятельной установке.

Все эти качества и делают источники энергии солнца одними из самых популярных. Но есть у данного способа получения электричества и недостатки:

  • Для домов с высоким показателем потребления электричества потребуется установка оборудования большой площади, которое займет много места на придомовой территории. Площадь станции должна быть не менее 10 м2. То есть данный тип получения энергии недоступен для владельцев небольших участков земли.
  • Второй недостаток - зависимость от суточных и сезонных изменений в солнечном излучении.
  • Третий - при работе данные установки не выделяют вредные вещества, но вот для изготовления фотоэлементов и гелиосистем, из которых состоит солнечная батарея, используются высокотоксичные вещества, которые сложно утилизировать.

Готовая станция имеет цену от 3500 до 7000 $. Более доступный способ получения энергии от солнца - коллекторы для нагрева воды. Данное оборудование улавливает солнечное тепло даже в те дни, когда звезда скрыта за тучами. Используется только для нагрева воды, электроэнергию не вырабатывает. Один коллектор удовлетворяет суточную потребность в горячей воде для семьи из трех человек. Цена варьирует от 1000 до 4000 $. Недостаток у данного вида оборудования только один, присущий и солнечным батареям - невозможность функционирования в зонах с низкой солнечной активностью и в ночное время суток.

Использование энергии ветра

Установки для преобразования энергии воздушного потока в электричество также уже не относятся в разряд фантастики и применяются повсеместно. Работают они по принципу ветряных установок, которые преобразовывают кинетическую энергию ветра в механическую энергию от вращения турбины. Данная энергия собирается и преобразуется инвертором в переменный ток. Минимальная скорость ветра, при которой образуется электричество от маховика - 2 м/с. Оптимальная скорость ветра - 8 м/с. По типу конструкции ветряные генераторы энергии делятся на модели с горизонтальным расположением ротора и с вертикальным.

Горизонтальная конструкция генератора имеет высокий показатель КПД, при монтаже используется небольшое количество материалов. Недостатки - для монтажа потребуется высокая мачта, сам генератор имеет сложную механическую часть, в обслуживании не удобен. Вертикальные отличает больший диапазон скоростей ветра, при котором они функционируют. Но при этом вертикальные ветряные генераторы не экономичны, так как требуют использования большего количества оборудования и материалов.

Использование ветряной станции ограничено показателями ветра в разрезе каждого сезона. Если в межсезонье, при повышенной активности воздуха, станция будет весьма эффективна, то в дни безветрия электричество вырабатываться не будет. Чтобы сгладить эту разницу и питать дом электрическим током бесперебойно, ветряную станцию оборудуют накопительным аккумулятором. Данная мера помогает накапливать энергию в ветреную погоду и использовать ее в периоды затишья.

Альтернативой установки аккумуляторной батареи к ветряной станции выступает преобразование энергии в тепло. Используют ее как для отопления, так и для горячего водоснабжения. В такой конструкции батарею заменяют водонакопительным баком. Использование ветряной станции в таком ключе позволяет снизить ее общую стоимость на 25%. Стоимость ветряной станции с аккумулятором составляет в среднем 10 000 $, без аккумулятора - 1000-2000 $.

Среди не очень приятных нюансов использования ветряной станции числится необходимость обустройство фундамента под оборудование. Его укрепляют особенно тщательно, чтобы во время сильных ветров мачту вместе с ветряком не вырвало из земли. Второй нюанс - возможность обледенения лопастей в зимний период, это снижает КПД станции. Во время работы данное оборудование образует шум и вибрации, потому монтируют его вдали от жилых строений.

Использование геотермальной энергии

Геотермальная энергия - это достаточно новый источник энергии для частного дома. В данном случае используется тепло, которое образуется в недрах планеты. Ядро Земного шара имеет высокую температуру, которая выходит на поверхность в вулканических областях, источниками воды и пара, а также содержится в глубоких слоях планеты. Геотермальное тепло используется как энергия источника тока и тепла.

Принцип работы геотермального источника энергии в частном доме достаточно прост - бурят скважину, в которую устанавливают тепловой насос. Установка качает из глубинных слоев горячую воду, при охлаждении она вырабатывают энергию, которая далее преобразуется в электричество. При работе данная установка расходует электрический ток, но при этом на каждый потраченный кВт она вырабатывает 5-6 кВт тока. Средняя стоимость установки для дома площадью 150 м2 составляет 30 000 $. Преимущества использования - неисчерпаемый источник энергии, который не зависит от сезона, времени суток и погодных условий.

Недостатки использования энергии Земли - термальная вода зачастую сильно минерализована и содержит токсические примеси, потому ее нельзя отправлять в обычные канализационные стоки. Отработанную воду возвращают в тот глубинный горизонт, из которого она была закачена. Некоторые ученые полагают, что данный вид получения энергии приводит к увеличению сейсмической активности в земной коре.

Использование энергии биомассы

О биотопливе уже наслышаны многие. Вокруг данного вида горячего разгорается масса споров и противоречивых отзывов. В качестве топлива для машин оно имеет привлекательную цену, но при этом до конца не понятно его влияние на мотор и его мощность. Но боитопливо применяется не только в качестве горючего для транспортных средств, но и как источник электрического тока. Данным горючим заменяют газ, бензин и дизель при заправке оборудования для выработки электрической энергии.

Биотопливо производится путем переработки различных растений. Для изготовления биологического дизеля применяют жиры из семян масляных культур, а бензин производят путем ферментации кукурузы, сахарного тростника, свеклы и других растений. Наиболее оптимальным источником биологической энергии признаны водоросли, так как неприхотливы, легко превращаются в боимассу с похожими на нефть маслянистыми свойствами.

Данная технология также позволяет получать биологический газ, который улавливают при брожении органических отходов пищевой промышленности и животноводства. В данном случае получают метан. При улавливании газа на свалках получают целлюлозный этанол. 1 тонна бесполезного мусора производит до 500 м3 полезного газа.

Что касается бытового использования биотоплива для выработки электрической энергии, то для этой цели приобретается индивидуальная биогазовая установка. Такой прибор вырабатывает природный газ из отходов. Стандартная установка ИБГУ-1 в сутки дает от 3 до 12 м3 газа, которые затем используются для отопления дома, заправки различного оборудования, в том числе и газового генератора электроэнергии. Стоимость биогазовой установки в среднем составляет 9 000 $.

Миниатюрная ГЭС

Еще один вид альтернативной энергетики, который успешно применяется в частных домах - индивидуальные ГЭС. В монтаже этот тип генераторов электричества является одним из самых сложных, но при этом его КПД значительно выше, чем у ветряных и солнечных источников. ГЭС сооружаются плотинные и бесплотинные, второй вариант наиболее прост и доступен. Такие установки называют еще проточными станциями. По устройству они делятся на станции с колесом, гирляндой, ротором Дарье и пропеллером.

  • Станция с водяным колесом имеет центральную круглую часть с лопастями, которая установлена перпендикулярно водяной поверхности. При движении вода давит на лопасти и крутит колесо. Принцип работы такой же, как в ветряной станции, только же в качестве источника выступает вода. Более сложные конструкции колесных водяных электростанций - колесо-турбина, имеющее специальные лопатки для струи воды.

  • Станция с гирляндой - это трос, на котором жестко закреплены роторы. Трос крепится на противоположных берегах водяного потока, роторы погружены в воду. При движении вода вращает роторы, а они передают это движение тросу.
  • Станция с ротором Дарье - конструкция похожа на предыдущую, но здесь ротор расположен вертикально и вращается за счет разных показателей давления в его лопастях. Этот показатель создается за счет сложной формы поверхности.

  • Станция с пропеллером - подводная установка с вертикальным ротором. Внешне данная установка схожа с ветряком, имеющим маленькие лопасти.

Среди представленных разновидностей ГЭС наиболее неудобной считается гирляндная установка. Она имеет низкую производительность, сама конструкция представляет опасность для окружающих людей, монтаж станции требует расхода большого количества материалов. Ротор Дарье более удобен, так как ось расположена вертикально и ее установка возможна над водой. Но смонтировать такую станцию достаточно сложно и ротор при старте необходимо раскручивать. Наиболее оптимальный вариант для изготовления своими руками - станция с пропеллером или колесом. Средняя стоимость станции мощностью 6 кВт составляет 8 000-10 000 $.

Сегодня весь мир обеспечен электроэнергией благодаря сжиганию угля и газа (ископаемое топливо), эксплуатации водного потока и управлению ядерной реакцией. Эти подходы достаточно эффективны, но в будущем нам придётся от них отказаться, обратившись к такому направлению, как альтернативная энергетика.

Во многом эта необходимость обусловлена тем, что ископаемое топливо ограничено. Кроме того традиционные способы добычи электроэнергии являются одним из факторов загрязнения окружающей среды. Поэтому мир нуждается в «здоровой» альтернативе .

Предлагаем свою версию ТОПа нетрадиционных способов получения энергии, которые в будущем могут стать заменой привычным электростанциям.

7 место. Распределённая энергетика

Перед тем как рассматривать альтернативные источники энергетики, разберём одну интересную концепцию, которая в перспективе способна изменить структуру энергетической системы.

Сегодня электроэнергия производится на больших станциях, передаётся на распределительные сети и поступает в наши дома. Распределённый подход подразумевает постепенный отказ от централизованного производства электричества . Добиться этого можно посредством строительства небольших источников энергии в непосредственной близости к потребителю или группе потребителей.

В качестве источников энергии могут использоваться:

  • микротурбинные электростанции;
  • газотурбинные электростанции;
  • паровые котлы;
  • солнечные батареи;
  • ветряки;
  • тепловые насосы и пр.

Такие миниэлектростанции для дома будут подключены к общей сети. Туда будут поступать излишки энергии, а при необходимости электросеть сможет компенсировать недостаток питания, например, когда солнечные панели работают хуже из-за облачной погоды.

Однако реализация этой концепции сегодня и в ближайшем будущем маловероятна, если говорить о глобальных масштабах. Связанно это в первую очередь с большой дороговизной перехода от централизованной энергетики к распределённой.

6 место. Грозовая энергетика

Зачем генерировать электричество, когда его можно просто «ловить» из воздуха? В среднем один разряд молнии – это 5 млрд Дж энергии, что эквивалентно сжиганию 145 л бензина. Теоретически грозовые электростанции позволят снизить стоимость электроэнергии в разы.

Выглядеть всё будет так: станции размещаются в регионах с повышенной грозовой активностью, «собирают» разряды и накапливают энергию. После этого энергия подаётся в сеть. Ловить молнии можно с помощью гигантских громоотводов, но остается главная проблема – за доли секунды накопить как можно больше энергии молнии. На современном этапе не обойтись без суперконденсаторов и преобразователей напряжения, но в будущем возможно появление более деликатного подхода.

Если говорить об электричестве «из воздуха», нельзя ни вспомнить о приверженцах образования свободной энергии. Например, Никола Тесла в своё время якобы продемонстрировал устройство для получения электрического тока из эфира для работы автомобиля.

5 место. Сжигание возобновляемого топлива

Вместо угля на электростанциях можно сжигать так называемое «биотопливо ». Таковым является переработанное растительное и животное сырьё, продукты жизнедеятельности организмов и некоторые промышленные отходы органического происхождения. В качестве примера можно привести обычные дрова, щепу и биодизель, который встречается на заправках.

В энергетической сфере чаще всего применяется древесная щепа. Она собирается при лесозаготовке или на деревообрабатывающем производстве. После измельчения она прессуется в топливные гранулы и в таком виде отправляется на ТЭС.

К 2019 году в Бельгии должно завершиться строительство крупнейшей электростанции, которая будет работать на биотопливе. Согласно прогнозам, она должна будет производить 215 МВт электроэнергии. Этого хватит на 450 000 домов.

Интересный факт! Многие страны практикуют выращивание так называемого «энергетического леса» – деревья и кустарники, наилучшим образом подходящие для энергетических нужд.

Будет ли альтернативная энергетика развиваться в направлении биотоплива пока маловероятно, ведь есть более перспективные решения.

4 место. Приливные и волновые электростанции

Традиционные гидроэлектростанции работают по следующему принципу:

  1. Напор воды поступает на турбины.
  2. Турбины начинают вращаться.
  3. Вращение передаётся на генераторы, которые вырабатывают электроэнергию.

Строительство ГЭС обходится дороже ТЭС и возможно только в местах с большими запасами энергии воды. Но самая главная проблема – это нанесение вреда экосистемам из-за необходимости строительства плотин.

Приливные электростанции работают по схожему принципу, но используют для выработки энергии силу приливов и отливов .

«Водные» виды альтернативной энергетики включают такое интересное направление, как волновая энергетика. Её суть сводится к генерации электричества посредством использования энергии волн океана, которая гораздо выше приливной. Самой мощной волновой электростанцией на сегодня является Pelamis P-750 , которая вырабатывает 2,25 МВт электрической энергии.

Раскачиваясь на волнах, эти огромные конвекторы («змеи») изгибаются, вследствие чего внутри приходят в движение гидравлические поршни. Они прокачивают масло через гидравлические двигатели, которые в свою очередь вращают электрогенераторы. Полученное электричество доставляется на берег через кабель, который проложен по дну. В перспективе количество конвекторов будет многократно увеличено и станция сможет вырабатывать до 21 МВт.

3 место. Геотермальные станции

Альтернативная энергетика неплохо развита и в геотермальном направлении. Геотермальные станции вырабатывают электричество, фактически преобразуя энергию земли, а точнее - тепловую энергию подземных источников.

Существует несколько типов таких электростанций, но во всех случаях они основываются на одинаковом принципе работы : пар из подземного источника поднимается по скважине и вращает турбину, подключенную к электрогенератору. Сегодня распространена практика, когда в подземный резервуар на большую глубину закачивается вода, там она под воздействием высоких температур испаряется и в виде пара под давлением поступает на турбины.

Лучше всего для целей геотермальной энергетики подходят районы с большим количеством гейзеров и открытых термальных источников, которые разогреваются вследствие вулканической активности.

Так, в Калифорнии работает целый геотермальный комплекс под названием «Гейзеры ». Он объединяет 22 станции, вырабатывающие 955 МВт. Источник энергии в данном случае – очаг магмы диаметром 13 км на глубине 6,4 км.

2 место. Ветряные электростанции

Энергия ветра – один из самых популярных и перспективных источников для получения электричества.

Принцип работы ветрогенератора прост:

  • под воздействием силы ветра вращаются лопасти;
  • вращение передаётся на генератор;
  • генератор вырабатывает переменный ток;
  • полученная энергия обычно накапливается в аккумуляторах.

Мощность ветрогенератора зависит от размаха лопастей и его высоты. Поэтому их устанавливают на открытых территориях, полях, возвышенностях и в прибрежной зоне. Эффективнее всего работают установки с 3 лопастями и вертикальной осью вращения.

Интересный факт! На самом деле энергия ветра является разновидностью солнечной энергии. Объясняется это тем, что ветры возникают из-за неравномерного прогрева солнечными лучами земной атмосферы и поверхности.

Чтобы сделать ветряк, не нужны глубокие познания в инженерии. Так, многие умельцы смогли себе позволить отключиться от общей электросети и перейти на альтернативную энергетику.


Vestas V-164 – самый мощный ветрогенератор на сегодня. Он вырабатывает 8 МВт.

Для производства электричества в промышленных масштабах используются ветровые электростанции, состоящие из множества ветряков. Крупнейшей является электростанция «Альта », расположенная в Калифорнии. Её мощность – 1550 МВт.

1 место. Солнечные электростанции (СЭС)

Наибольшие перспективы имеет солнечная энергетика. Технология преобразования солнечного излучения с помощью фотоэлементов развивается из года в год, становясь всё эффективнее.

В России солнечная энергетика развита относительно слабо. Однако некоторые регионы показывают отличные результаты в этой отрасли. Взять хотя бы Крым, где функционирует несколько мощных солнечных электростанций.

В будущем возможно может развиваться космическая энергетика . В этом случае СЭС будут строиться не на поверхности земли, а на орбите нашей планеты. Самое главное преимущество такого подхода – фотоэлектрические панели смогут получать гораздо больше солнечного света, т.к. этому не будет препятствовать атмосфера, погода и времена года.

Заключение

Альтернативная энергетика имеет несколько перспективных направлений. Её постепенное развитие рано или поздно приведёт к замещению традиционных способов получения электричества. И совершенно необязательно, что во всём мире будет использоваться только одна из перечисленных технологий. Подробнее об этом смотрите в ролике ниже.

Случайные статьи

Вверх